
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

AIR FORC  

W

APPROVED F

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

 

E INSTITUTE OF TECHNOLOGY
 

right-Patterson Air Force Base, Ohio 

 

OR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 
 
 
 
 
 
 
 
 
 

SINGLE-MODE RAMAN FIBER LASER IN A MULTIMODE FIBER

THESIS 

Matthew B. Crookston, 2Lt, USAF 

 

AFIT/GAP/ENP/03-03 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the U.S. 
Government 

 



AFIT/GAP/ENP/03-03 

 

 

Single-Mode Raman Fiber Laser in a Multimode Fiber 

 

THESIS 

 

Presented to the Faculty 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the  

Degree of Master of Science (Applied Physics) 

 

 

Matthew B. Crookston, BS 

Second Lieutenant, USAF  

 

March 2003 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 



AFIT/GAP/ENP/03-03 

 

Single-Mode Raman Fiber Laser in a Multimode Fiber 

 

 

Matthew B. Crookston, BS 
Second Lieutenant, USAF 

 

 

 

 

 

Approved:   
          
 
 
     
 Won B. Roh (Chairman) Date   
 
 
     
 Glen P. Perram (Member) Date 
 
 
     
 Timothy H. Russell (Member) Date 
 
 
 

 
 

 



 

Acknowledgments 

I would like to thank the chair of my thesis committee, Dr. Roh, and the committee 

members Dr. Perram and Dr. Russell for their guidance and valuable input.  I would also 

like to thank Dr. Baek and Shawn Willis for their help in the lab.  Finally, I would like to 

thank my parents and especially my wife for all of their emotional support and 

encouragement. 

 

 

 

 Matthew B. Crookston 

 iv 



 

Table of Contents 

Acknowledgments.............................................................................................................. iv 

List of Figures ................................................................................................................... vii 

List of Tables ..................................................................................................................... ix 

Abstract ............................................................................................................................... x 

Single-Mode Raman Fiber Laser in a Multimode Fiber..................................................... 1 

1 Introduction................................................................................................................. 1 

2 Background................................................................................................................. 4 

2.1. Stimulated Raman Scattering (SRS) in Optical Fibers ....................................... 4 

2.2. Raman Fiber Lasers (RFL) ................................................................................. 6 

2.3. Beam Quality ...................................................................................................... 8 

3 Experiment................................................................................................................ 10 

3.1. Beam Quality Measurements............................................................................ 10 

3.2. Energy and Spectrum Measurements................................................................ 13 

4 Beam Cleanup........................................................................................................... 14 

4.1. Single Pass SRS Beam Cleanup ....................................................................... 14 

4.1.1. 300m Fiber Single Pass SRS Beam Cleanup............................................ 14 

4.1.2. 40m Fiber Single Pass SRS Beam Cleanup.............................................. 16 

4.2. Free Running Laser Beam Cleanup .................................................................. 17 

4.3. Beam Cleanup Summary .................................................................................. 18 

5 Energy and Spectral Analysis ................................................................................... 20 

5.1. Single Pass SRS Analysis ................................................................................. 20 

 v 



 

5.1.1. 300m fiber Single Pass SRS Analysis ...................................................... 20 

5.1.2. 40m Fiber Single Pass SRS Analysis ....................................................... 24 

5.2. Raman Fiber Laser Analysis............................................................................. 27 

6 Conclusion ................................................................................................................ 31 

Appendix A: Numerical Approach for Estimating M2 ..................................................... 34 

Appendix B: Intensity Stabilization using a GaAs Wafer ................................................ 37 

References......................................................................................................................... 41 

Vita.....................................................................................................................................43 

 vi 



 

List of Figures 

Figure 1: The SRS process where a pump photon of frequency vp is annihilated and a 
down shifted Stokes photon vs, and optical phonon vo, are generated. ....................... 4 

Figure 2: (a) Example of transmitted spectrum where each Stokes peak is separated 
by approximately 440 cm-1. (b) Examples of far-field Stokes images dispersed 
by a diffraction grating. (c) Photograph of escaping light from fiber spool 
during data collection.  Image from Ref 2. ................................................................. 5 

Figure 3: The Fiber Bragg Grating showing reflection of the Bragg wavelength. 
Light and dark regions represent variations in index.................................................. 7 

Figure 4: Example of a Raman fiber laser with fiber Bragg gratings................................. 8 

Figure 5: A Schematic of the setup used to measure beam quality of separate Stokes 
beams. ....................................................................................................................... 10 

Figure 6. Transmission Spectrum of fiber Bragg gratings obtained from BRΛGG 
Photonics................................................................................................................... 12 

Figure 7. A Schematic of the setup used to make energy and spectrum 
measurements............................................................................................................ 13 

Figure 8.  Example of spot size measurements and least squares fit to determine the 
M2 values for the 300m fiber.  M2 Results: Pump = 20.88, 1st Stokes = 9.41, 2nd 
Stokes = 6.64, 3rd Stokes = 6.55................................................................................ 15 

Figure 9: Near field pump beam profile showing a predominant LP11 mode................... 17 

Figure 10.  Spectrum of 300m fiber with input energy near 350µJ. ................................. 20 

Figure 11.  Evolution of the Stokes beams in the 300m fiber........................................... 21 

Figure 12.  Fractional energies in the 300m fiber. ............................................................ 22 

Figure 13.  Output  energy versus input energy for 300m fiber. ...................................... 23 

Figure 14.  Evolution of the Stokes beams in the 40m fiber............................................. 24 

Figure 15.  Spectrum of the 40m fiber output with a Q-switched pump. ......................... 25 

Figure 16.  Fractional output energies of the 40m fiber with a Q-switched pump. .......... 26 

Figure 17.  Output vs Input energy for 40m fiber............................................................. 26 

 vii 



 

Figure 18.  Spectrum of Raman Fiber Laser showing resonance at 1115nm. .................. 28 

Figure 19.  Evolution of the 1st Stokes in the RFL. .......................................................... 29 

Figure 20.  Fractional energy of the RFL. ........................................................................ 29 

Figure 21.  Output energy versus input energy for the RFL............................................. 30 

Figure 22.  Free running laser pulse comprised of a number of spikes and a width of 
about 50µsec. ............................................................................................................ 37 

Figure 23.  Two-photon absorption in GaAs that has a bandgap of 1.42 eV.................... 38 

Figure 24.  Setup testing the effectiveness of a GaAs wafer to reduce spikes in a free 
running laser pulse. ................................................................................................... 39 

 

 viii 



 

List of Tables 

Table 1.  Wavelengths for different Stokes from a 1064-nm pump wavelength, each 
separated by 440cm-1. ................................................................................................. 5 

Table 2.  Summary of M2 measurements.......................................................................... 19 

 

 

 ix 



 

AFIT/GAP/ENP/03-03 

Abstract 

The feasibility of a transverse single-mode Raman fiber laser using a multimode fiber 

has been investigated.  The Raman fiber laser operates in low-order transverse modes 

despite the fact the fiber supports multimode beam propagation.  The performance 

characteristics of the Raman Fiber Laser are compared with those of the single-pass SRS 

beam. 
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Single-Mode Raman Fiber Laser in a Multimode Fiber 

 

1 Introduction 

As the Department of Defense transforms to meet the challenge of asymmetric 

warfare in combating terrorism, most reports recognize the importance of Directed 

Energy.1  While there are many applications for lasers in this transformation vision, beam 

quality will limit the effectiveness of many of these applications.  For example, a laser 

used to illuminate a target will have a longer range if it has a Gaussian profile.  Any other 

profile will diverge faster than a Gaussian laser beam, and limit the range of the laser.  

Currently, solid-state lasers are one of the choices to produce high power lasers, but they 

also tend to be highly abberated.1,2  Therefore, research into processes that clean up laser 

beams becomes important.  

The idea to use nonlinear effects in multimode fiber as a tool for beam clean up began 

with the observation of picosecond Raman pulses with small spot sizes.3  Bladeck et al. 

used a mode-locked Nd:YAG laser to produce 25psec pulses at 532nm wavelength 

coupled into a 7.5m long multimode fiber with a 100µm core diameter.  They observed 

that the diameter of the Stokes beams generated though Stimulated Raman Scattering 

(SRS) were about 10 times smaller than the pump beam.  This smaller spot size suggested 

single-mode operation in a multimode fiber.  Later, a mode locked and Q-switched 

Nd:YAG laser, operating with a wavelength of 1064 nm, produced a 150psec pulse with 
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a peak power of 600kW, and was focused into a 50m long multimode fiber that had a 

parabolic refractive-index profile and a core diameter of 50µm.  In this experiment, 

Grudinin et al. observed the excitation of 12-15fsec SRS pulses in the multimode fiber.4  

Motivated by these two experiments, Chiang studied the evolution of modes in the Stokes 

wave.  Using a tunable dye laser operating at 585nm with 3nsec pulse widths focused into 

a 30m long, graded index multimode fiber with a 50µm core diameter, he observed that 

under the proper launching conditions, the Stokes wave propagated predominantly in the 

LP01 mode.  Chiang further predicted the possibility of a single-mode Raman fiber laser 

in a multimode fiber that could give higher power because of the larger spot size.5  In 

summary, all three of these references pointed out that one of the applications of these 

results could be the propagation of a single-mode Raman laser beam in a multimode 

fiber.  

More recent research has verified beam cleanup through SRS and the related 

nonlinear process of Stimulated Brillouin Scattering.2,6,7 Using the second harmonic of a 

Nd:YAG laser operating at 532nm and a 300m long fiber, 10.5nsec pulses with about 

160kW peak power, Russell et al. measured the beam quality of the combined Stokes 

beams.  The authors reported an M2 value of 20.7 for the transmitted pump beam and 2.4 

for the combined Stokes beams.2  The report further suggested that the beam quality 

improves for higher order Stokes because the far-field divergence pattern narrowed for 

higher order Stokes as seen in Figure 2(b) in Chapter 2.  The first part of this research, 

described in Chapter 4, explores quantitatively the improvement of beam quality of the 

individual orders of the Stokes beam for single pass SRS.  The second half of this 
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research described in Chapter 5, examines the Raman Fiber Laser in a multimode fiber.  

Chapter 2 contains background information and Chapter 3 the experimental setup.  
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2 Background 

2.1. Stimulated Raman Scattering (SRS) in Optical Fibers 

Stimulated Raman Scattering (SRS) is a third order nonlinear, inelastic scattering 

process occurring in certain materials.  The annihilation of an incident pump photon 

creates a lower frequency photon, referred to as the Stokes, and an optical phonon in that 

material.8  Figure 1 shows an energy conservation property of the SRS process.  

vs 
vp 

vo 

 
Figure 1: The SRS process where a pump photon of frequency vp is annihilated and a down shifted Stokes 
photon vs, and optical phonon vo, are generated. 

 

The frequency shift of the Stokes photon is equal to the molecular vibrational 

frequency of the material.  The Raman gain for silica fiber peaks around 440cm-1.  SRS in 

silica fibers was first observed using a frequency doubled Nd:YAG that produced 532nm 

emission.  By coupling this light into a 9m fiber with a 4µm diameter, the output 

consisted of a 532nm beam and a 545nm Stokes beam.9  As seen in  Figure 2, the Stokes 

beam itself can reach large enough intensity to act as a pump to produce a 2nd Stokes 

beam, and the 2nd Stokes beam can produce another Stokes beam so that with large 
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enough input energy, many order stokes beams each separated by 440cm-1 are produced.  

For a pump that has a wavelength of 1064nm,  lists the calculated values of the 

Stokes wavelengths assuming the peaks are separated by 440cm-1. 

Table 1

Table 1.  Wavelengths for different Stokes from a 1064-nm pump wavelength, each separated by 440cm-1. 

In
te
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ity

 

(a) 

0 500 1000 1500 2000 
Dv (cm-1) 

(b) 

(c) 

 

Figure 2: (a) Example of transmitted spectrum where each Stokes peak is separated by approximately 440 
cm-1. (b) Examples of far-field Stokes images dispersed by a diffraction grating. (c) Photograph of escaping 
light from fiber spool during data collection.  Image from Ref 2. 

 

Wavelength
Stokes [nm]
0-pump 1064
1st 1116
2nd 1174
3rd 1238
4th 1309
5th 1389
6th 1480  
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In optical fibers, the critical pump power, Pcr, required to reach SRS threshold is 

proportional to the effective area, A, and inversely proportional to the effective length of 

the fiber, Leff.
8 

cr
AP  

where effL

L is the fiber length and αp is the fiber loss at

longer lengths or smaller effective areas exh

pumped with sufficient power to reach thres

power goes into the generation of Stokes bea

threshold represents the amount of power ‘lo

Another important note, as mentioned by

mode in a Stokes wave depends on the moda

pump mode.5  Therefore, for best results in b

pump should be the LP01 mode. 

2.2. Raman Fiber Lasers (RFL) 

To create a Raman fiber laser (RFL), mir

placed at both ends of an optical fiber.  Origi

end directly to a mirror.  The current method

written in the fiber to reflect the Stokes wave

currently used to fabricate FBGs, all of them

pattern of UV radiation.  Due to the photosen

 

effL
∝  (2-1)
[ ]L

p

pe α

α
−−= 11  

 the pump frequency.  Therefore, fibers with 

ibit lower SRS thresholds.  After the fiber is 

hold for SRS, nearly all of the additional 

ms.  For purposes of beam cleanup, the 

st’ in the conversion process. 

 Chiang, is that the growth of a particular 

l overlaps between the Stokes mode and the 

eam cleanup, the predominant mode of the 

rors that reflect the Stokes wavelength are 

nally, a RFL was made by butting the fiber 

 used is to use Fiber Bragg Gratings (FBG) 

length.10  Of the four different processes 

 irradiate the fiber with a sinusoidal intensity 

sitive nature of the fiber, the regions 
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exposed to higher intensity undergo larger changes to the optical index.11  Figure 3 shows 

the periodic nature of the index as it is written in the fiber, where Λ is one period of the 

index change.  The Bragg wavelength, λB, that will have the highest reflection due to the 

grating, is related to Λ by*:  

Λ= 2Bλ .  

Λ Cladding 

All wavelengths 
All waveleng
except λB 

λB 

Core Cladding 

Figure 3: The Fiber Bragg Grating showing reflection of the Bragg wavelength. Light and dark re
represent variations in index.  

 

Writing these gratings in the fiber at both ends to reflect the Stokes beam crea

Raman fiber laser.   shows a schematic diagram of a Raman fiber laser.  L

coupled from a pump laser into a fiber generates SRS.  If the pump beam has a lo

enough duration, the Stokes wave will oscillate between the two FBG and produc

RFL.  

Figure 4

 

                                                 

* This is derived from the Bragg angle equation: 
Λ

=
2

sin λθ B , where Bθ  = 90 degrees. 
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Figure 4: Example of a Raman fiber laser with fiber Bragg gratings. 

 

2.3. Beam Quality 

Since a Gaussian beam has the best laser beam propagation characteristics, laser 

beam quality values compare the laser beam to a Gaussian laser beam.  A Gaussian laser 

beam propagates according to the following equation: 

( ) ( )2
02

0
2

2
2
0

2 zz
w

wzw −+=
π
λ , 

where w(z) is the spot size of the beam, w0 is the beam waist, z0 is the beam waist

location, and λ is the wavelength of the laser.  Siegman12 proposed that a factor, M

could be added to the above equation to describe the propagation of a real laser b

such that: 

( ) ( ) ( )2
02

0
2

2
222

0
2 zz

w
Mwzw −+=

π
λ , 

where M2 is the value that compares the laser beam to that of a Gaussian laser bea

the value M2 = 1 corresponds to a Gaussian laser beam.  The practical way this is

measured is to take at least three spot size measurements of the beam at different 

Pump Fiber FBG FBG 
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(2-3)
 

2, 

eam, 

 
(2-4)
m, and 

 



 

locations and fit the values of M2, z0, and w0.  Appendix A outlines a least squares method 

for calculating these values from measured spot sizes.  To measure the spot size, this 

research utilized a frame grabber system with the software program BeamView produced 

by the Coherent Auburn Division. 13  BeamView performs a least squares fit of an 

acquired laser beam profile to the equation 

( ) 2

exp 













 −
−=

σ
cxVI , (2-5) 

where I is the intensity of a pixel at location x, V is the maximum intensity of the fitted 

Gaussian curve, c is the center of the Gaussian fit peak, and σ is the radius of the 

Gaussian Fit curve at 1/e2 intensity level.  This last term, σ, is taken as the value for the 

spot size of the laser beam. 

 A quick way to estimate the M2 value that a fiber will support is to compare the 

acceptance angle of the fiber to the divergence angle of a Gaussian beam that has a waist 

equal to the diameter of the fiber core. The acceptance angle of the fiber, θf, is given by 

, where NA is the numerical aperture of the fiber.  The divergence angle 

of a Gaussian beam with waist d is given by

(NAf
1sin−=θ )

dg πλθ /2= , where λ is the wavelength of 

the beam. As an example, the M2 of a fiber that has a 50µm core diameter, NA = 0.20, 

and is guiding 1064nm light would be estimated by: 

( ) 15
2

sin 1
2 ≈≈≈

−

λ
π

θ
θ NAdM

g

f . 

 9 



 

3 Experiment 

3.1. Beam Quality Measurements 

To explore the differences between single-pass SRS to SRS in a Raman fiber laser, 

this research used two experimental configurations.  The first set-up, depicted in Figure 5, 

is used for measuring beam quality.  The fiber is pumped by a 10Hz Continuum Surelite 

Nd:YAG laser operating at 1064nm.  This laser operates Q-switched for the single-pass 

experiments, and free running for the RFL experiment.  The pulse width for the Q-

switched operation is 7nanoseconds ± 0.6ns, and free running, it produces a series of 

spikes over a pulse width of 51µsec ± 5µsec.†  

f =100 cm 
Nd:Yag Laser Fiber 

5x λ/2 PBS P 5x 
Diffraction 

Grating 
ObjectiveObjective
  

Filters 

Frame Grabber on 
optics rail 

 
Figure 5: A Schematic of the setup used to measure beam quality of separate Stokes beams. 

                                                 

† Pulse width error calculated from standard deviation of the pulse width. 
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Since the power from the laser may easily damage the fiber and since it is necessary 

to vary the input intensity into the fiber to analyze the growth of the Stokes beam, three 

optical elements regulate the input energy to the fiber: a half-wave plate, Polarizing Beam 

Splitter (PBS), and polarizer.  The laser emits horizontally polarized light.  The PBS 

passes horizontally polarized light.  A half-wave plate on a rotating stage is placed 

between the laser and the PBS to attenuate the output energy of the laser.  The half-wave 

plate is set to limit the maximum power just below the fiber damage threshold.  (If the 

half-wave plate is rotated more than three degrees, the transmitted energy damages the 

front end of the fiber.  Rotating the half-wave plate only 2 degrees reduces the likelihood 

the energy from the laser will damage the fiber.)  Inserting a polarizer after the PBS 

allows the rotation of the polarizer to adjust the energy of the pump transmitted to the 

fiber.    

From the half-wave plate, PBS, and polarizer combination, the light from the laser is 

coupled into the fiber by a 5x microscope objective.  This microscope objective has a 

Numerical Aperture (NA) = 0.13.  The graded index fiber, manufactured by Corning, has 

a core diameter of 50µm ± 3µm with a 0.200 ± 0.015 NA.  At 1064 nm, the fiber has an 

effective index of 1.488 ± 0.001 and an attenuation coefficient, kmdB /08.1=α  

.  Two lengths of fiber were used, a 300m fiber and a 40m fiber.  The 40m 

fiber has fiber Bragg gratings (FBG) written on both ends.  Figure 6 is the transmission 

spectrum of the combined FBGs as received from BRΛGG Photonics that made the 

FBGs.  The peak reflection is at 1115.1nm.  

125.0 −= km
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Figure 6. Transmission Spectrum of fiber Bragg gratings obtained from BRΛGG Photonics.  
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At the output end of the fiber, a 5x microscope objective collimates the light.  A 

100cm positive lens focuses the beam to an optics rail.  A diffraction grating with 295 

grooves/mm and a blaze angle of 1.34µm separates the pump and Stokes beams.  A frame 

grabber system with an Electrophysics 7290 PbS camera on an optics rail measures the 

beam waist at different locations.  

3.2. Energy and Spectrum Measurements 

The second set-up is depicted below in Figure 7.  This set-up is very similar to the 

set-up used to take beam quality measurements, except the positive lens, diffraction 

grating, and a camera on an optics rail are replaced with an energy meter and spectrum 

analyzer.  

Nd:YAG Laser Fiber 

5x 5x λ/2 PBS P 
Objective Objective

Energy Meter 
or Spectrum 

Analyzer 

  

 

Figure 7. A Schematic of the setup used to make energy and spectrum measurements.  
  

Energy measurements are taken with a Laser Probe energy meter and spectral 

measurements are taken with an ANDO Optical Spectrum Analyzer.  The spectrum 

analyzer has a range from 350 – 1750nm and configured for 1nm resolution in these 

experiments.  
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4 Beam Cleanup  

One of the main objectives of this research is to analyze the improvement of beam 

quality in the higher order Stokes beams.  As depicted previously in Figure 5, a 

diffraction grating separates the pump beam from the Stokes beams.  Individually, the 

beams are focused along an optics rail.  A frame grabber measures the spot size of the 

beam at different locations along the rail.  Because the diffraction grating spreads the 

beam in the horizontal direction, or ‘x’ axis, the diameter of the beam is measured along 

the vertical ‘y’ axis.  At each position, the diameter of the beam was measured from the 

average of at least 50 acquired images.  Section 2.3 outlines the process used to calculate 

the M2 values from the diameter of the beam at several locations.  The first section in this 

chapter reports the measurements of beam cleanup for single pass SRS in both the 300m 

and 40m fibers.  For these measurements, the laser is Q-switched.  In the second section 

of this chapter, the pump laser is altered to free running operation so that the much longer 

pulse width allows the first Stokes energy in the 40m fiber to be amplified between the 

fiber Bragg gratings (FBG) like a laser oscillator.  

4.1. Single Pass SRS Beam Cleanup 

4.1.1. 300m Fiber Single Pass SRS Beam Cleanup 

Figure 8 shows an example of spot size measurements along with a least squares fit 

for the 300m fiber.‡  The figure shows that the beam waist for the Stokes is about half the 

                                                 

‡ See Appendix for more information on the numerical method used to fit the data. 
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pump waist.  In addition, waist locations for the higher order stokes are shifted to the left 

compared to the waist location of the pump.  The calculated M2 values from the test 

shown in the figure are: Pump = 20.88, 1st Stokes = 9.41, 2nd Stokes = 6.64, 3rd Stokes = 

6.55, and 4th Stokes = 6.14 [not shown]. 

 

Figure 8.  Example of spot size measurements and least squares fit to determine the M2 values for the 300m 
fiber.  M2 Results: Pump = 20.88, 1st Stokes = 9.41, 2nd Stokes = 6.64, 3rd Stokes = 6.55. 

 

The unexpectedly high M2 value for the first Stokes of 9.41 prompted a second test.  

The 300m fiber was cleaved, stripped, and realigned.  The results for the second test gave 

the following M2 values for the different beams: Pump = 13.38, 1st Stokes = 5.51, 2nd 

Stokes = 3.82, and 3rd Stokes = 4.00.  
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In these two tests, the first Stokes beam is about a factor of two better than the pump 

beam and the second Stokes is about a factor of 2 better than the first Stokes beam.  

The beam quality values for higher order Stokes could not be taken because the peaks of 

the higher order Stokes could not be resolved from the background on the camera.  

 

4.1.2. 40m Fiber Single Pass SRS Beam Cleanup 

One major difference between the 300m fiber and the 40m fiber is that the longer 

fiber produced more orders of Stokes than the shorter fiber.  For the shorter fiber, it was 

difficult to measure the spot size for more than the first two Stokes beams because the 3rd 

Stokes beam was either below or barely above threshold.  The first measurement of beam 

quality yielded the poor result of the pump M2 = 9.14 and the 1st Stokes M2 = 6.45. This 

poor beam quality for the first Stokes beam is caused by the pump beam propagating in a 

predominantly LP11 mode as seen in Figure 9.  Since the Stokes beam grows in the 

predominant mode of the pump, the pump should have a predominant LP01 mode for the 

most effective beam cleanup.5  This makes proper alignment of the fiber crucial.  To 

align the fiber, an energy meter was placed at the output and the fiber was aligned for 

maximum output energy.  A more effective way to align the fiber is to use the frame 

grabber and maximize the peak of the Stokes beam.  Using this alignment procedure, 

another test of the beam quality resulted in M2 values of, pump = 15.95, 1st Stokes = 2.14, 

and 2nd Stokes = 2.57.    
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Figure 9: Near field pump beam profile showing a predominant LP11 mode. 

 

4.2. Free Running Laser Beam Cleanup 

In this experiment, the pump laser is operating free running so that it produces a

width of about 50µs. The beam quality of the output beams when pumped with a fr

running laser is very similar to the beam quality of the single pass SRS beam clean

mentioned previously.  The fitted M2 values for the free-running configuration are: 

= 9.2, 1st Stokes = 2.6, and 2nd Stokes = 1.9.  The improvement from the pump to th

Stokes is similar to the beam clean up of the 40m single pass experiment.  The 
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improvement from the 1st Stokes to the 2nd Stokes shows an improvement of beam quality 

by a factor of about 2 , similar to the results for the 300 m fiber.  

4.3. Beam Cleanup Summary 

For the single pass experiments, the two measurements with the 300 m fiber had M2 

values of the first Stokes approximately a factor of two better than the pump, and the 

second Stokes about a factor of 2  better than the first Stokes.  In the first of three 

experiments with the 40m fiber, the pump propagated predominantly in LP11 mode and 

the first Stokes had only slightly better beam quality.  In the other two experiments, the 

first Stokes had an M2 value near 2.  In the RFL, the first Stokes had an M2 near 2, but 

also showed an improvement factor of about 2  in the second Stokes from the first 

Stokes.   lists the M2 values obtained in each experiment.   Table 2

It may be noted that a few of the M2 values exceed the estimated high M2 of around 

15 as calculated in section 2.3.   The M2 values listed below are most likely inflated 

because the spot size of the beam was measured from the average of 50 images.  Jitter in 

the laser causes the center of the beam to vary slightly from pulse to pulse. As the center 

of the beam varies slightly from pulse to pulse, the spot size of the average would be 

larger than the spot size of each individual shot.  Further, this would have more of an 

effect in the far field where the spot size is larger.  Since the M2 value compares the far 

field divergence to the divergence of a Gaussian beam, over estimating the far field spot 

size would result in larger M2 numbers.  
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Table 2.  Summary of M2 measurements.   

fiber Pump

length Operation pump 1st Stokes 2nd Stokes 3rd Stokes notes

300m Q-switched 20.88 9.41 6.64 6.55

300m Q-switched 13.38 5.51 3.82 4.00

40m Q-switched 9.14 6.50 Pump predominantly LP 1,1 mode

40m Q-switched 7.99 2.33 3.74

40m Q-switched 15.95 2.14 2.57

40m Free running 9.20 2.60 1.90

Beam Quality [M2]
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5 Energy and Spectral Analysis 

5.1. Single Pass SRS Analysis 

To analyze how the Stokes beams evolve, spectrum and energy measurements were 

taken as a function of input energy for both the 300m and 40m fibers with the laser Q-

switched according to Figure 7. 

5.1.1. 300m fiber Single Pass SRS Analysis 

The pump and the first three Stokes beams are quickly identified on a spectrum from 

the output of the fiber. The peaks correspond closely to the values in Table 1 on page 5. 

1117
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Figure 10.  Spectrum of 300m fiber with input energy near 350µJ. 
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To see the evolution of the Stokes in the 300m fiber, spectral measurements were 

taken at different input energies.   shows the evolution of the Stokes beams in 

the 300m fiber.  It can be seen on this graph that an increase in energy after the 1st Stokes 

reaches threshold that most of the energy goes into the growth of that beam.  

Figure 11

Figure 11.  Evolution of the Stokes beams in the 300m fiber. 

 

 

 

  

By calculating the area under each of the curves and diving by the total area, 

fractional intensity may be calculated.  Figure 12 shows the fractional energies as a 

function of input energy for the 300m fiber. 

 21 



 

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100
300m Fiber Fractional Energies

Input Energy [µJ]

P
er

ce
nt

ag
e 

of
 O

ut
pu

t E
ne

rg
y

Pump
1st Stokes
2nd Stokes
3rd Stokes

 

Figure 12.  Fractional energies in the 300m fiber. 

 

An energy meter placed before the spectrum analyzer measured the output energy 

from the fiber.  By multiplying the fractional energy by the output energy, it is possible to 

create a graph of output energy versus input energy.  Calculating the efficiency of the 1st 

Stokes conversion by diving the output energy by the input energy gives an efficiency 

near 1.6 %.  This is a very low efficiency and most likely due to misalignment.  In order 

to estimate how well the pump beam is coupled into the fiber, the energy coupled into the 

fiber may be calculated using, 

( )LEE inout α−= exp ,  
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(5-1)



 

where Eout is the measured output power from the fiber, Ein is the coupled energy into the 

fiber, α is the attenuation coefficient of the fiber, and L is the length of the fiber.  The 

fiber has an attenuation coefficient, α = 2.5x10-4m-1 and lenght = 300m.  Examining the 

first data point in Figure 13, Eout = 1.81µJ and therefore from equation 5-1, the actual 

energy coupled in to the fiber,  Ein = 1.95µJ.  Dividing Ein by the measured energy before 

the fiber of 64.6µJ indicates that only about 3% of the energy is being coupled into the 

fiber. Assuming that only 3% of the energy is being coupled into the fiber, the Stokes 

beam has a maximum conversion efficiency of around 54%.  

 

 

Figure 13.  Output  energy versus input energy for 300m fiber. 
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5.1.2. 40m Fiber Single Pass SRS Analysis 

The 40m fiber has many similarities to the 300m fiber.  One similarity is that the first 

Stokes beam reaches threshold for nearly the same input energy.  According to equation 

2-1, the Stokes beam in the shorter fiber should have a higher threshold, but as mentioned 

previously, the 300m fiber was not aligned well.  The following graph shows the growth 

of the Stokes in the 40m Fiber.  

  

Figure 14.  Evolution of the Stokes beams in the 40m fiber. 

 

The following spectrum, taken at about 270µJ input pump energy is different in many 

ways from the 300m fiber.  First, the peak of the 1st Stokes is shifted to a higher 

wavelength.  This is due to the reflection off the FBG, and confirmed by a local minimum 
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at 1115.4nm, the Bragg wavelength of the FBG.  Second, the Stokes beam is spectrally 

wider in the 40m fiber than in the 300m fiber.  Third, for the pump powers examined, 

only the first two Stokes reach threshold.  Finally, a peak just to the right of the pump 

beam appears.  This anomaly has a peak wavelength at 1074nm.  By integrating the area 

under each of the peaks and dividing by the total energy, fractional energies are 

calculated and graphed in Figure 16.  Multiplying the fractional energies by the output 

energy gives the output energy of each of the beams and is graphed in Figure 17.  With 

the better alignment, the conversion efficiency into the first Stokes is near 10%.  Once 

again, using equation 5-1 with L= 40m, and the first data point in Figure 17 (92.6, 16.38), 

it is determined that about 18% of the light is being coupled into the fiber.  This also 

corresponds to a conversion efficiency of the energy coupled into the fiber to the first 

Stokes at about 55%.  

1060 1110 1160 1210 1260

Wavelength [nm]

A
rb

itr
ar

y 
In

te
ns

ity

 

Figure 15.  Spectrum of the 40m fiber output with a Q-switched pump.  
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Figure 16.  Fractional output energies of the 40m fiber with a Q-switched pump. 

 

Figure 17.  Output vs Input energy for 40m fiber. 
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5.2. Raman Fiber Laser Analysis 

In order for feedback to occur in a Raman fiber laser, the pump pulse duration must 

be sufficiently long so that light in the fiber can make several round trips.  As mentioned 

in Chapter 0, the free running laser has a pulse width of close to 50µs and the fiber has an 

effective group index of n = 1.488.  The number of round trips may be approximated by, 

125
2
1

≈⋅≈
Ln

ctN , 

where  N is the number of round trips, c is the speed of light, t is the pulse width, n is the 

index of the fiber, and 2L is the round trip length. This produces feedback for the laser.  

The feedback is confirmed by a spectrum of the 40m fiber.  The peak of the first Stokes 

this time is centered on 1115nm, the Bragg wavelength.  In addition, a full width half-

max of about 2nm for the Stokes is much narrower than the 6nm FWHM for free running 

case and corresponds nicely to the FWHM of the reflectance of the Bragg Grating in the 

fiber.  

The evolution of the Stokes beam in the RFL is shown in Figure 19.  Since the Stokes 

intensity is much lower when compared to the pump and since the second Stokes has just 

reach threshold, this suggests that the Stokes beam is starting to evolve.  Using the same 

process of integrating the areas under the curve, Figure 20 graphs the fractional values as 

a function of input power, and Figure 21 graphs output energy versus input energy.   
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Figure 18.  Spectrum of Raman Fiber Laser showing resonance at 1115nm.  

 

Using equation 5-1 again, about 28% of the pump energy was coupled into the fiber. 

Of the light coupled into the fiber, 11% is converted to the first Stokes wavelength. This 

conversion is measured near the threshold of the second Stokes beam. In the previous two 

examples, the conversion of energy to the Stokes beam did not reach a maximum until 

there was much more energy than that required for the second Stokes to hit the threshold. 

Therefore, it is predicted that as more energy is coupled into the RFL the conversion of 

energy to the fist Stokes would at least reach the conversion efficiency of the fiber when 

the pump is Q-switched. 

One large difference between the RFL and the single pass experiments is that the 

threshold for the Stokes beam is much lower.  The power to reach threshold for the RFL 

is about three orders of magnitude smaller than it is for the single pass SRS. The large 

reduction to threshold is attributed to the fact that the Bragg gratings provide feedback at 

the Stokes wavelength in the fiber. 
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Figure 19.  Evolution of the 1st Stokes in the RFL. 
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Figure 20.  Fractional energy of the RFL. 
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Figure 21.  Output energy versus input energy for the RFL. 
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6 Conclusion 

This research demonstrated a Raman fiber laser in a multimode fiber.  To create the 

RFL, Bragg gratings were written in the optical fiber and act as mirrors to create an 

optical resonator.  The fiber was end pumped by a free running Nd:YAG laser operating a 

1064nm.  The pulse width of the free running laser is 50µsec.  Q-switched, the laser has a 

pulse width of about 7nsec.  The RFL needed the longer pulse width so that the Stokes 

beam could be amplified as the light oscillated in the fiber between the Bragg gratings.  

When the pump laser was Q-switched, single pass SRS measurements were taken 

because the light did not oscillate in the fiber.  Using the pump laser free running or Q-

switched this research examined beam quality and spectrum analyzed of SRS in the fiber. 

In the single pass experiments, the beam quality for the 300m fiber’s first Stokes 

beam was about a factor of two better than the pump beam.  The second Stokes was about 

a factor of 2 better than the first Stokes.  For higher order Stokes, the beam quality 

showed marginal, if any, improvement.  For the 40m fiber, three beam quality 

measurements were taken.  In the first measurement, the pump was propagating 

predominantly in the LP11 mode.  The pump M2 equaled 9.1 while the Stokes equaled 6.5.  

The poor cleanup is due to the energy not propagating in a predominantly LP01 mode.  In 

the other two experiments, care was given to better align the fiber.  In those experiments, 

each of the pump beams had similar M2 values to the pump beams in the 300m fiber, yet 

had Stokes beams M2 values near 2.  For the RFL, the M2 value of the Stokes was near 

2.5, but the Second Stokes in the RFL showed the best M2 value of 1.9.  In all of these 

experiments, the fiber had to be aligned as to make the pump beam propagate in 
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predominantly the LP01 mode. Furthermore, these values are expected to over estimate 

the true beam quality of the different beams because the spot sizes for the beams were 

measured from the average of many pulses of the laser.  Since jitter in the laser caused 

the center of the beam to shift slightly at each measurement, the spot size of the average 

of the pulses was larger and resulted in larger M2 values.  

In reviewing the spectra, the spectra of the 300m fiber did not show anything unusual.  

The peaks of the Stokes were very close to theoretical values.  In the single pass 

experiment with the 40m fiber, the spectral widths of the peaks were wider than that of 

the corresponding peaks of the 300m fiber.  In addition, a minimum in the first Stokes at 

the Bragg wavelength shifted the peak of the Stokes to a lower frequency.  A peak at 

1074nm showed up due to an unknown source.  The Stokes beam of the RFL had a 2nm 

FWHM compared to the 6nm FWHM of the single pass 40m fiber. The Stokes beam was 

centered on the Bragg wavelength.  This is in contrast to the dip at the Bragg wavelength 

for the single pass experiment and confirms oscillation in the fiber.  

The conversion efficiency to the Stokes wavelength is important in any application 

that would use this process for laser beam cleanup. For the single pass SRS experiments, 

the conversion was near 55% of the light coupled into the fiber.  For the RFL experiment, 

the conversion was near 11%. The RFL has lower conversion efficiency because it was 

not operating much above threshold.  As the input energy is increased, it is expected that 

the conversion efficiency will be near, if not greater than that for the single pass SRS 

experiments. 

It was also shown that the RFL reduced the threshold for SRS by about three orders 

of magnitude compared to a fiber of similar length. This reduction in threshold is from 
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the feedback of the Bragg gratings at the Stokes wavelength.  This is an advantage 

because it reduces the threshold required to operate the Raman fiber laser. 

The purpose of this research was to demonstrate a single-mode Raman fiber laser in a 

multimode fiber.  The experiment came short in demonstrating that the Raman fiber laser  

was single-mode, but did demonstrate that the beam propagated in low-order transverse 

modes despite the fact it was in a multimode fiber. 
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Appendix A: Numerical Approach for Estimating M2 

Following the discussion in section 2.3, this appendix outlines a numerical approach 

for calculating the M2 value of laser beam.  According to reference 12, a real laser beam 

spot size is given by, 

( ) ( ) ( )2
02

0
2

2
222

0
2 zz

w
Mwzw −+=

π
λ

, 
 

where w(z) is the spot size of the beam, w0 is the beam waist, z0 is the beam waist

location, z is the distance from the waist, λ is the wavelength of the laser, and M2

value that compares the laser beam to that of a Gaussian laser beam.  When M2= 

equation is identical to that of a Gaussian laser beam. 

Three or more measurements of the spot size at different locations give data p

fit the above equation to find values for w0 , M2, and z0.  The following method si

the real laser equation into a linear equation and uses a least-squares parabola fit.

Using the substitutions,  

x = z,  
y(x) = w2(z),  

( ) 2
0

2

2
22

w
MA

π
λ

= , 

AzB 02−= , and 
22

0 oAzwC += ,  
the real laser beam spot size equation can be written as 

CBxAxxy ++= 2)( . 

Once A, B, and C are found, the beam location, waist, and M2 are given by,  
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To find the coefficients A, B, and C, use the following numerical method as outlined 

by Matthews and Fink .14 Given ( ){ }N
kkk yx 1, =

xy )(

 are N points, and abscissas are distinct, the 

coefficients of the least squares parabola, , are the solution values of 

the linear system:  
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 (A-3) 

In this application, x is the location of the measurement and y is the spot size of the 

laser beam at that location.  The following Matlab code performs these calculations. 

function [m2,w0,z0]=Msquared(F,wavelength) 
% This function computes the M^2 value of a laser beam according to 
Siegman, SPIE vol 1224, 1990 p. 8 
% W^2=W0^2+M2^2*lambda^2/pi^2/W0^2*(Z-Z0^2)^2 
% Input- 
%   F    = Nx2 matrix where column 1 are positions(cm) and column 2 are  
%           corresponding diameters [mm] 
%   wavelength = wavelength of beam [nm]  
% Output- 
%   m2   = M^2 value of the real laser beam 
%   w0   = Waist size of the beam [m] 
%   z0   = Location of Waist [m] 
% Assumptions:  
%   At least 3 data points were taken 
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%   Abscissas are distinct 
%   Beam waist lies between two of the data points 
 
mm=1e-3; 
cm=1e-2; 
nm=1e-9; 
lambda=wavelength*nm; 
 
X=F(:,1);   % X = Distances from the waist or 'Z' 
X=cm.*X; 
Y=F(:,2);   % Y = Spot size or W 
Y=Y/2*mm; 
y=Y.^2; 
 
n=length(X); 
 
sumx4=sum(X.^4); 
sumx3=sum(X.^3); 
sumx2=sum(X.^2); 
sumx1=sum(X); 
 
sumy1=sum(y); 
sumy1x1=sum(y.*X); 
sumy1x2=sum(y.*X.^2); 
 
G=[sumx4 sumx3 sumx2 sumy1x2;sumx3 sumx2 sumx1 sumy1x1;sumx2 
sumx1 n sumy1]; 
H=rref(G); 
 
a=H(1,4); 
b=H(2,4); 
c=H(3,4); 
 
z0=-b/(2*a); 
w0=sqrt(c-a*z0^2); 
m2=sqrt(pi^2*w0^2*a/lambda^2); 
 
Z=(X(1,1):.01:X(n,1)); 
figure (1) 
plot(X,Y,'+') 
xlabel('Position [meter]') 
ylabel('Spot Size [meter]') 
title('Spotsize vs Position ') 
hold on 
plot(Z,sqrt(a.*Z.^2+b.*Z+c)) 
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Appendix B: Intensity Stabilization using a GaAs Wafer 

This appendix outlines an idea that has the potential to stabilize the intensity of a free-

running laser operating in the near IR.  As seen in Figure 22, the free running laser pulse 

has a number of spikes and a width of about 50µsec.  Since the FND-100 has a negative 

bias, larger intensity is in the downward direction.  
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Figure 22.  Free running laser pulse comprised of a number of spikes and a width of about 50µsec. 

  

It was thought that use a GaAs wafer could reduce the intensity fluctuations 

associated with the spiking through the nonlinear effect of two-photon absorption.  GaAs 

has a bandgap of 1.42eV.  The energy of a photon from the laser operating at 1.06µm is 

about 1.17eV.  Since the bandgap of GaAs is higher than the energy of the photon, the 

GaAs appears transparent under normal conditions.  The idea behind two-photon 

absorption is that two photons may be absorbed together because their combined energy 

is greater than the bandgap.  The probability of two-photon absorption increases as the 
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intensity of the laser beam increases.  Thus, two-photon absorption in GaAs could help 

reduce the intensity fluctuation of the laser because there would be more absorption in the 

GaAs wafer at a peak in the pulse, but less absorption at when the intensity is lower.   

 

2.34 eV 

2nd  photon absorbed 

1.17 eV 

Bandgap 1.42 eV 

1 photon absorbed 

 

Figure 23.  Two-photon absorption in GaAs that has a bandgap of 1.42 eV. 

 

Figure 24, shows the test used to determine if a GaAs wafer would decrease the 

spikes in intensity of the laser pulse.  A 400µm thick, undoped GaAs wafer with (100) 

orientation is set at Brewster’s angle.  An FND-100 placed before the wafer and a second 

FND-100 placed after the wafer are read simultaneously on an oscilloscope.  After testing 

with the oscilloscope, the second beam block is removed so that energy measurements 

can be taken.  Energy measurements were taken with the GaAs wafer, and with the GaAs 

wafer removed.    
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Since the response from an FND-100 depends on the location, the volts per division 

for one FND-100 was scaled so that the peaks of the pulses looked nearly equal as 

viewed on the oscilloscope.  The ratio between peak and valley stayed the same 

according to both detectors.  From the response seen on the oscilloscope there was no 

advantage of using the GaAs wafer.  

 

Oscilloscope  

 

Figure 24.  Setup testing the effectiveness of a GaAs wafer to reduce spikes in a free running laser pulse. 

 

A second test took energy measurements with and without the wafer.  Twenty single-

shot measurements of energy were taken.  With the wafer, energy measurements ranged 

from 344 – 368µJ, a range of 24µJ, an average of 355.6µJ, and a standard deviation of 

6.7µJ.  The GaAs was removed and the intensity of the laser reduced so that the energy 

response would be in the same range.  With the GaAs removed, energy measurements 

Energy Meter  

Nd:YAG Laser 

λ/2 PBS 
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Block Beam block removed for 
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GaAs Wafer 
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ranged from 338 – 349 µJ, a range of 11µJ, an average of 342 µJ, and a standard 

deviation of 3.8µJ.  

The results of these two tests did not give sufficient evidence that two-photon 

absorption in the GaAs wafer played a role in reducing the spiking in the free-running 

laser pulse.  Therefore, the wafer was not used in the Raman fiber laser experiments. 
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